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Abstract—The 6G Computing Power Network (CPN) is en-
visioned to orchestrate vast, distributed computing resources
for future intelligent applications. However, achieving efficient,
trusted, and privacy-preserving computing resource sharing in
this decentralized environment poses significant challenges. To
address these issues, this article proposes a blockchain and evo-
lutionary algorithm-based computing resource sharing (BECS)
mechanism. BECS is designed to dynamically and adaptively
balance task offloading among computing resources within the
6G CPN, thereby enhancing resource utilization. We model
computing resource sharing as a multi-objective optimization
problem, aiming to improve resource utilization while addressing
other trade-offs. To tackle this NP-hard problem, we devise a
kernel-distance-based dominance relation and incorporate it into
the Non-dominated Sorting Genetic Algorithm III (NSGA-III),
thereby significantly enhancing population diversity. In addition,
we propose a pseudonym scheme based on zero-knowledge proofs
to protect user privacy during computing resource sharing.
Finally, security analysis and simulation results demonstrate that
BECS can effectively leverage all computing resources in the 6G
CPN, thereby significantly improving resource utilization while
preserving user privacy.

Index Terms—6G computing power network, computing
resource sharing, multi-objective evolutionary optimization,
blockchain, pseudonym scheme.

I. INTRODUCTION

IN the upcoming 6G era, it is anticipated that everything will
be intelligently connected, enabling a wide range of data-

intensive applications. By deeply integrating communication
networks with various vertical industries, 6G will enable
unprecedented applications such as Holographic Integrated
Sensing and Communication (HISC), Artificial General Intel-
ligence (AGI), and Digital Twins (DT) [1]. This indicates that
AI will be one of the most crucial technologies for constructing
a comprehensively intelligent 6G networks, enabling network
services to evolve dynamically and autonomously in response
to demand. The coordination of end-edge-cloud computing
devices to form a Computing Power Network (CPN) is ex-
pected to become a leading paradigm for supporting ubiq-
uitous intelligent services in 6G networks [2]. In essence,
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the CPN envisions intelligent orchestration, where computing
tasks are dynamically offloaded to the most suitable execution
environment based on real-time service demands. This fosters
a highly dynamic and hybrid computing environment that
promotes the sharing of computing resources across 6G net-
works. However, realizing this vision in the 6G CPN presents
fundamental challenges. In particular, it is necessary to design
a resource sharing mechanism that can simultaneously ensure
trustworthiness and preserve user privacy, while navigating the
complex performance trade-offs inherent in such a massive and
decentralized system.

While Multi-access Edge Computing (MEC) in 5G net-
works paved the way for offloading computing tasks to the
network edge and unleashing potential for the Internet of
Things (IoT) [3], its limitations become evident when faced
with more complex demands in the future. MEC is typically
characterized by localized deployments, limited resources, and
siloed management, all of which hinder the integration and
orchestration of ubiquitously distributed, heterogeneous com-
puting resources across the network. In the 6G era, networks
are expected to scale up to support trillions of connections.
Meanwhile, intelligent and diversified applications will not
only require computing resources that far exceed previous
levels but will also urgently demand a ubiquitous computing
paradigm. This paradigm must enable real-time coordination
of network-wide computing resources and dynamic on-demand
orchestration. Crucially, it involves navigating complex trade-
offs among multiple, often conflicting, performance objectives
such as minimizing latency, reducing energy consumption,
and maximizing resource utilization across seamless cross-
domain allocations [4]. As a result, 5G MEC is inadequate
for meeting future computing demands in terms of both scale
and operational paradigms. Therefore, 6G networks require
the CPN to deeply integrate and intelligently orchestrate
dispersed, heterogeneous, and geographically distributed com-
puting resources across the entire network. Such integration
promotes full resource utilization and enables efficient, large-
scale computing resource sharing [5].

Driven by the unprecedented features and services of fu-
ture 6G networks, communication networks are increasingly
exploring distributed or multi-center management models [6].
Furthermore, the 6G CPN aims to comprehensively mobilize
vast heterogeneous devices, edge nodes, and cloud comput-
ing resources across organizational boundaries. This cross-
domain and heterogeneous environment, which lacks a central
authority of trust, poses significant challenges for the access,
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scheduling, trading, and management of computing resources
[7]. Traditional centralized architectures not only struggle
with inefficiency and single points of failure, but they also
lack the transparency and immutability needed to build trust
among diverse stakeholders. Therefore, it is necessary to
establish a novel distributed management mechanism that en-
ables autonomous, reliable, and efficient collaboration among
devices. Such a mechanism must provide verifiable, tamper-
proof records for resource trading and enforce operational
rules transparently, without relying on a central intermediary.
Blockchain, with its inherent decentralization and its ability to
enhance trust and transparency among multiple stakeholders,
emerges as a key enabling technology for future 6G network
management [8]. It offers secure, transparent, and traceable
solutions for computing resource sharing, trusted trading,
access control, and other critical functionalities within the
CPN.

Furthermore, the ubiquitous sharing and collaboration of
computing resources exacerbate the risk of user privacy leak-
age. The 6G CPN involves a wide variety of computing
devices. In particular, when user devices participate in com-
puting resource sharing, not only their identity but also their
behavioral patterns and interaction records can be collected
and linked, allowing attackers to infer sensitive information
[9]. These potential threats create a significant barrier to
participation. To achieve efficient computing resource sharing,
it is essential to provide a mechanism that allows users to prove
their legitimacy and conduct transactions without revealing
their persistent identities, thus ensuring both accountability and
anonymity.

To address these intertwined challenges of efficiency, trust,
and privacy, this article introduces a novel mechanism for
6G CPN, named BECS, which utilizes Blockchain and
Evolutionary algorithms for efficient Computing Sharing. It
is designed to create a robust and efficient ecosystem where
heterogeneous computing resources can be shared on a large
scale. By effectively tackling the critical issues of resource al-
location efficiency, decentralized trust, and user privacy preser-
vation, BECS aims to unlock the full potential of distributed
computing in 6G networks. Performance evaluations confirm
that the proposed BECS mechanism improves resource utiliza-
tion by up to 54%. Specifically, the main contributions of this
article are summarized as follows:

• We propose a dynamic and efficient blockchain-based
mechanism for computing resource sharing, aimed at en-
suring secure allocation and trading of resources between
any devices in 6G CPN, thus enhancing utilization.

• We formulate computing allocation as a multi-objective
optimization problem (MOOP) with six objectives, em-
ploying an evolutionary algorithm to balance the interplay
among these objectives, thus achieving optimal allocation
schemes for 6G CPN.

• We propose a novel evolutionary algorithm, NSGA-III-
KDR, which improves the dominance relation of Non-
dominated Sorting Genetic Algorithm III (NSGA-III)
by using the kernel distance to enhance diversity in
addressing the computing allocation MOOP.

• We design a novel pseudonym scheme based on the

Schnorr protocol, which protects user privacy during
computing resource sharing in 6G CPN.

The remainder of this article is organized as follows. Section
II reviews related work. Section III introduces the system
model and formulates the computing resource sharing prob-
lem. Section IV describes NSGA-III-KDR and its application
in solving the computing allocation MOOP. Section V presents
the proposed pseudonym scheme and computing trading. Sec-
tion VI analyzes the security and computational complexity of
the proposed scheme. Section VII presents simulation results.
Section VIII concludes the article.

II. RELATED WORKS

In this section, we first introduce the paradigm of the
6G CPN and contrast it with 5G MEC. Then, we discuss
existing works on computing allocation and sharing. Finally,
we elaborate blockchain for decentralized management and
privacy preservation.

A. The Paradigm of 6G Computing Power Network

The trajectory from 5G to 6G signals a profound transfor-
mation, moving beyond the traditional pursuit of enhanced
communication metrics. Driven by the rapid advancement of
AI, it represents a fundamental paradigm shift toward the deep
integration of computing and networking [4]. Although 5G
MEC optimizes computing services by pushing computing
power to the network edge, it is typically an isolated and
localized computing architecture managed by a single operator
within a limited area [10]. Consequently, despite MEC’s
computing resources being proximity to the user, they are
unable to achieve efficient orchestration and collaboration with
other computing resources on a network-wide scale.

6G CPN will deeply integrate all computing devices within
the network to form a distributed and intelligent comput-
ing environment [11]. By seamlessly abstracting, virtualizing,
and integrating decentralized computing resources managed
by different operators and originating from diverse device
types, 6G CPN aims to unify the heterogeneous resource
landscape. It constructs a unified computing architecture that
spans from user devices to multi-domain edge nodes and
cloud centers. [12]. This transition from isolated resources
to a unified architecture also assigns different identity roles
to computing devices within the network. In 5G MEC, user
devices are typically resource requesters, while edge servers
act as resource providers. In contrast, 6G CPN breaks this
limitation, every computing device can function both as a
requester and a provider, thereby enabling full utilization of
all computing resources in the network [13].

B. Computing Allocation and Sharing in CPN/End-Edge-
Cloud

The dynamic allocation and efficient utilization of comput-
ing resources are central to the concept of CPN. Addressing
the inherent optimization challenges in managing these aspects
has been a key research focus. Lu et al. [2] utilized deep
reinforcement learning to find the optimal task transfer and
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TABLE I
DIFFERENCES BETWEEN BECS AND OTHER MAIN RELATED WORKS

Ref. Core Scenario Optimization Method MOOP
Cloud-Edge-

End
Collaboration

Blockchain
Features

Advanced
Privacy
Scheme

6G
Relevance

[2] Energy-efficient task transfer
in Wireless CPN

Multi-Agent Deep
Reinforcement Learning × × × × ✓

[5] Efficient task offloading in
Edge CPN

Two-Stage Evolutionary
Search × × × × ✓

[15] Computation offloading in
Industrial IoT NSGA-III ✓ ✓ × × ×

[16] Dependent task offloading in
MEC MOEA/D ✓ ✓ × × ×

[18] Secure computation
offloading in IoT

Deep Reinforcement
Learning × ✓ ✓ × ×

[19] Cooperative task offloading
in MEC

Multi-Agent DRL, Game
Theory × × ✓ × ×

[20]
Secure computation

offloading in cyber-physical
systems

Deep Reinforcement
Learning × ✓ ✓ × ×

[21] Secure task offloading in
MEC

Distributed Deep
Q-Learning × ✓ ✓ × ×

BECS Privacy-preserving computing
resource sharing in 6G CPN NSGA-III-KDR ✓ ✓ ✓ ✓ ✓

computing allocation strategies in wireless CPN. Chen et al.
[5] proposed an on-demand two-stage computing resource
scheduling model to achieve efficient task offloading in edge
CPN. However, as 6G services become increasingly diverse
and demanding, optimizing for single or dual objectives often
proves insufficient to capture the inherent trade-offs between
factors like latency, energy consumption, cost, and resource
utilization [14].

Therefore, formulating computing allocation as a MOOP
has become a more effective approach for handling these
conflicting objectives. Meanwhile, evolutionary algorithms are
widely adopted due to their ability to identify a set of non-
dominated solutions representing different trade-offs. Peng et
al. [15] formulated complex task offloading in the IIoT as a
four-objective MOOP and developed a method to dynamically
allocate computing resources based on the NSGA-III. Gong et
al. [16] employed the multi-objective evolutionary algorithm
based on decomposition (MOEA/D) to optimize a three-
objective edge task offloading problem, aiming to minimize
delay and maximize rewards. While these approaches demon-
strate the applicability of MOEAs, standard algorithms like
NSGA-III and MOEA/D can face challenges when dealing
with many-objective optimization, often struggling to maintain
sufficient population diversity alongside convergence pressure
[17]. This limitation can hinder the exploration of the full
solution space, particularly for complex 6G CPN scenarios in-
volving numerous performance dimensions and heterogeneous
resources.

C. Blockchain for Decentralized Management and Privacy
Preservation

Building on the need for decentralized trust and manage-
ment in 6G networks, blockchain technology has been actively
explored as a key enabler [22]. Xie et al. [23] exploited

the immutability of blockchain to propose a resource trading
mechanism based on sharding and directed acyclic graphs for
large-scale 6G networks, thereby enhancing resource utiliza-
tion efficiency. Nguyen et al. [18] proposed a blockchain-based
mobile edge-cloud computation offloading scheme, leveraging
the distributed characteristics of blockchain to to provide
secure and trusted computing services. Wang et al. [24] pro-
posed a provable secure blockchain-based federated learning
framework for wireless CPN, aimed at accelerating the con-
vergence of federated learning and enhancing the efficiency of
wireless CPN. These works highlight blockchain’s potential to
automate, secure, and streamline interactions like resource dis-
covery, access control, scheduling coordination, and payment
settlement via smart contracts [25], thereby fostering a reliable
environment for large-scale computing resource sharing.

6G networks will integrate AI to fully merge the physical
and digital worlds, necessitating enhanced security and privacy
[26]. Nguyen et al. [19] utilized blockchain to provide ade-
quate security for task offloading in mobile edge computing.
Wang et al. [20] proposed a blockchain-enabled cyber-physical
system integrating cloud and edge computing to achieve
secure computing offloading. Samy et al. [21] introduced
a blockchain-based framework for task offloading, ensuring
security, integrity, and privacy in mobile edge computing.
Although leveraging the characteristics of blockchain can
provide preliminary security and privacy protection for edge
and cloud computing allocation and trading, device-to-device
computing resource sharing in 6G networks will require more
comprehensive solutions to ensure the security and privacy
between devices [27].

An overview of related works is given in Table I. Distinct
from the aforementioned works, BECS is designed as a
holistic mechanism for the 6G CPN. It uniquely combines a
blockchain architecture, advanced multi-objective optimization
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Fig. 1. Overview of the BECS architecture in 6G CPN.

techniques, and cryptographic privacy protection to tackle the
intertwined challenges of efficiency and security in computing
resource sharing of 6G CPN.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the computing resource sharing
system model considered by BECS, along with other models
used in constructing the MOOP, including the communication,
computing, and service models.

A. System Model

To meet the demands of future intelligent applications,
BECS introduces a generalized architecture, as illustrated
in Fig. 1, designed to support diverse forms of computing
resource sharing in 6G CPN. In this architecture, all com-
puting devices, denoted as D = {D1, . . . , Dd, . . . , DD}, are
categorized into three layers: the user computing layer, edge
computing layer, and cloud computing layer. This classifica-
tion fundamentally redefines their interplay. Moreover, BECS
overcomes the rigid and siloed structure of traditional 5G
MEC. Instead of treating computing resources as isolated
within discrete physical layers, BECS abstracts and virtualizes
all participating devices across the network into an integrated,
unified, and orchestrated resource pool. Consequently, the
layer classification reflects the functional capabilities of de-
vices rather than enforcing rigid operational boundaries. The
resources in D are inherently heterogeneous, encompassing
devices from different administrative domains, multiple op-
erators, and diverse ownerships, thereby forming a cohesive,
network-wide computing continuum that can be dynamically
orchestrated.

The proposed BECS is primarily designed for a metropoli-
tan area network scenario. In this context, numerous com-
puting devices are geographically distributed within a city
and are interconnected through a high-bandwidth, low-latency
optical fiber backbone. This dense and high-speed infrastruc-
ture represents a key characteristic of future 6G-enabled smart

city deployments [28]. Therefore, BECS focuses on resource
sharing within this metropolitan scope, where the primary
communication bottlenecks and latency variations originate
from wireless access links and task processing, rather than the
stable, high-speed wired backbone. Specifically, the set of user
computing devices, denoted as U = {U1, . . . , Uu, . . . , UU},
includes smartphones, computers, wearable devices, IoT de-
vices, vehicles, and other devices that directly interact with
users. These devices typically possess limited computing
power. The set of edge computing devices, denoted as
E = {E1, . . . , Ee, . . . , EE}, includes edge servers, roadside
units, cloudlets, and other devices capable of providing time-
sensitive computing services to users. The set of cloud comput-
ing devices, denoted as C = {C1, . . . , Cc, . . . , CC}, consists
of remote computing centers capable of providing large-
scale computing power. The evolutionary algorithm matches
computing resource requesters with providers, facilitating a
multi-dimensional measurement of the deep reuse of comput-
ing resources. Additionally, with the support of permissioned
blockchain, BECS enables dynamic management and trading
of fine-grained computing resources. The proposed architec-
ture consists of three main components:

1) Computing Resource Providers (CRPs): As large lan-
guage models become increasingly widespread, devices with
abundant computing power will increasingly provide comput-
ing support to devices with limited resources. In BECS, all
devices within 6G CPN with free computing resources can
serve as CRPs.

2) Computing Resource Requesters (CRRs): In general,
when a device lacks sufficient computing capability to handle
a task’s demands, it needs to request additional resources. In
BECS, any device can be a CRR, provided that the requested
resources exceed its own computing capacity.

3) 6G Base Stations (6GBSs): As critical components in
BECS, 6GBSs provide reliable communication services to de-
vices and serve as blockchain maintenance nodes responsible
for transaction bookkeeping and block packaging. Each 6GBS
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consists of three components:
• Registration and Certification Component (RCC): The

RCC is responsible for managing the identities of devices
and issuing and verifying certificates.

• Computation Component (CC): The CC is responsible for
maintaining the blockchain.

• Storage Component (SC): The SC is responsible for
storing data from devices and the blockchain.

In contrast to the static client-server architecture of 5G
MEC, CRP and CRR in BECS do not represent fixed device
roles but are instead transient functional states of computing
devices, determined by their real-time computational surplus
or deficit. This fluidity and flexibility are essential to unlocking
the potential of computing resource sharing in 6G CPN.
Meanwhile, with the support of blockchain and evolutionary
algorithms, computing devices can autonomously match and
schedule supply and demand, thereby meeting the ubiquitous
and heterogeneous computing demands anticipated in future
networks.

This study primarily focuses on efficient computing resource
sharing. Accordingly, the computing device Dd is denoted as
Dd = {ςd, ψd}, where ςd is usually measured by device’s CPU
[29]. The inherent heterogeneity of the 6G CPN is captured
by the diverse characteristics of these three layers, where
devices possess varying computing capacities, service prices,
and are subject to different network conditions. Meanwhile,
T = {T1, . . . , Tt, . . . , TT } denotes the set of all computing
tasks. The tuple Tt = {φt, ξt, τt, dt} describes the computing
task Tt. φt and ξt can be obtained using methods described in
[30], such as graph analysis. Notations that will be used are
presented in Table II.

B. Communication Model

In BECS, a Non-Orthogonal Multiple Access (NOMA)
based communication model is considered for the 6G uplink,
which allows multiple user devices to transmit data to the
6GBS over the same frequency band, thereby significantly
enhancing spectral efficiency [31]. Successful decoding in
NOMA hinges on the Successive Interference Cancellation
(SIC) technique at the receiver [32]. This requires the signals
to be decoded sequentially, which is predicated on a known
channel gain order.

Without loss of generality, the users are indexed such that
their channel gains are in descending order, i.e., g1 > · · · >
gu > · · · > gU . Consequently, when decoding the signal for
user Uu, signals from users with stronger channel conditions
(U1, . . . , Uu−1) have already been cancelled. The signals from
users with weaker channel conditions (Uu+1, . . . , UU ) consti-
tute the co-channel interference. The resulting data transmis-
sion rate for Uu is therefore calculated via Shannon’s theorem
as follows:

Ru = B log2

(
1 +

pugu

σ2
0 +

∑U
n=u+1 pngn

)
. (1)

If Uu offloads Tt to Dd, the data transmission latency can
be expressed as follows:

TABLE II
SUMMARY OF NOTATIONS

Notation Definition
D the set of all computing devices
U the set of user computing devices
E the set of edge computing devices
C the set of cloud computing devices
T the set of all computing tasks
ςd the computing capacity (in CPU cycles/s) of Dd

ψd the service price of Dd per unit of time
φt the data size of Tt
ξt the required computing amount (in CPU cycles)

of Tt
ξd the average computing amount (in CPU cycles)

of tasks assigned to Dd

τt the maximum time consumption allowed of Tt
dt ∈ {ut, et, ct} the final execution device for Tt
pu, pn the transmission power of Uu and Un

σ2
0 the noise power
B the bandwidth of each subchannel
Nd = {U,E,C} the number of Dd in each layer
ρd the computing resources occupancy of Dd in

each layer
αd the tasks processed number per unit of Dd’s

computing capacity
pd∗→d,t the probability of offloading Tt from Dd∗ to Dd,

and satisfies
∑

d∈{u,e,c} pd∗→d,t = 1

κd the effective capacitance coefficient of Dd

Pide the minimum value of the objective function

Ltra
u,t =

φt

Ru
. (2)

Therefore, the communication energy consumption of Uu

can be calculated as follows:

Etra
u,t = puL

tra
u,t . (3)

C. Computing Model

In the considered three layers computing resource sharing
structure, the computing tasks of a CRR can be executed
in any device of CRP. However, computing devices vary in
terms of task transfer and processing capabilities. This intense
competition for computing resources at each layer, inevitable
in 6G PCN with numerous CRRs and CRPs, necessitates
balancing the task load across the system’s layers. Generally,
with limited computing resources at each layer, tasks may have
to wait for an available processor. Therefore, the M/M/c model
[33], which describes task offloading as a Poisson process
with an average arrival rate of λt, can be used to model
task processing delays. Based on the superposition property of
the Poisson process and the offloading interactions among the
three layers of computing resources, the average task arrival
rate for each layer can be calculated as
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λd =


∑T

t=1(λt × pd∗→u,t) if d = u∑T
t=1

∑
d∗∈{u,e}(λt × pd∗→e,t) if d = e∑T

t=1(
∑

d∗∈{u,e,c} λt × pd∗→c,t) if d = c

. (4)

Therefore, the average time consumption of each task at
each layer, encompassing both the queuing and the execution
times, can be calculated as

Lcom
d,t =

C(Nd, ρd)ρd
λd(1− ρd)

+
ξt
ςd
, (5)

where ρd can be calculated as ρd = λd

Ndαdςd
. C(Nd, ρd) is

known as Erlang’s C formula, which can be calculated as

C(Nd, ρd) =

(Ndρd)
Nd

Nd!∑Nd−1
k=0

(Ndρd)k

k! + (Ndρd)
Nd

Nd!(1−ρd)

. (6)

At the same time, the energy consumption of Dd in each
layer during the execution of computing tasks can be calcu-
lated as follows [34]:

Ecom
d,t = κdξtς

2
d , (7)

where κd is depending on the chip architecture.

D. Service Model

1) Computing occupancy: As a direct indicator of com-
puting resource utilization, it is quantified by the number
of devices participating in computing resource sharing while
maintaining the provision of all network services. It aims to
enhance the overall breadth of resource engagement across the
system, which can be defined as follows:

Otot =

D∑
n=1

xn, (8)

with

xn =

{
1 Device dn is occupied
0 Device dn is free

. (9)

2) Privacy entropy: More applicable computing offloading
can be achieved by constructing three layers computing struc-
tures. However, the decentralization of computing devices in-
troduces privacy leakage risks during task offloading. Privacy
entropy, a method of quantifying privacy security, is used to
measure the security of information transmission [35]. Higher
privacy entropy indicates more disordered data, preventing
attackers from making inferences and thereby ensuring secure
information transmission.

The types of offloaded data vary according to the computing
tasks. Thus, in BECS, we set the relationship between Tt and
pd∗→d,t to be a one-to-one correspondence, and the privacy
entropy of Tt in Dd can be calculated as

Hd = −
T∑

t=1

pd∗→d,t log2 pd∗→d,t. (10)

3) Load balancing: As a key metric for evaluating comput-
ing device workloads, load balancing aims to equalize each

device’s load to the average while ensuring an equitable and
efficient distribution of workload based on device capabili-
ties. Concentrating multiple tasks on a single device reduces
computational efficiency and increases energy consumption.
The standard deviation of tasks and the computing capabilities
of devices can indicate whether they are load-balanced [36].
Therefore, the load balancing of Dd can be calculated as

Bd =

√∑D
d=1 (λdξt − ςd)

2

D
. (11)

4) Sharing revenue: A suitable revenue can encourage the
participation of computing devices in computing resource
sharing, thereby enhancing the overall resource utilization.
The logarithmic utility function is used to quantify the sharing
revenue of Dd, which can be calculated as

Rd = ln

(
1 + β1ψd

ξt
ςd

+ β2ςd

)
. (12)

E. Premise Assumptions

The assumptions and requirements specified below are
applied consistently throughout this article unless otherwise
stated.

1) The proposed computing resource sharing operates within
a metropolitan area, where edge and cloud nodes constitute
a well-connected computing infrastructure, linked by a high-
capacity optical backbone.

2) Computing tasks can be offloaded from the outer to the
inner layer as depicted in Fig. 1, or within the same layers,
provided that the computing capacity of CRP exceeds that of
CRR.

3) Each user device is equipped with a single antenna,
facilitating real-time communication with the 6GBS.

4) The communication latency on the optical backbone
is assumed negligible in comparison to the dominant and
more variable delays introduced by wireless access and task
computing [37].

4) Based on the permissioned blockchain, user registration
information is visible only to 6GBSs within the blockchain,
whereas the computing resources status is visible to all users.

5) All users securely deliver their keys through a secure
channel.

IV. COMPUTING ALLOCATION BASED ON NSGA-III-KDR

In this section, we first introduce the proposed computing
allocation MOOP. Subsequently, we explain the principle of
kernel distance-based Dominance Relation and the optimiza-
tion process based on NSGA-III-KDR.

A. MOOP of Computing Allocation

The core of our computing allocation mechanism is formu-
lated as a MOOP. The goal is to intelligently assign computing
tasks to available resources in the 6G CPN, balancing multiple,
often conflicting, performance objectives. These objectives
span from system efficiency and cost to user-centric metrics
like privacy and service quality.
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First, the system cost objectives are defined, which in-
clude the total time consumption (Ltot) and total energy
consumption (Etot), which serve as key metrics for evaluating
computing efficiency and energy sustainability in green 6G
networks.

Total Time Consumption (Ltot): As formulated in (13),
this metric captures the overall latency. It is the sum of
the computation time (Lcom) across all three layers and the
wireless transmission time (Ltra) incurred when user devices
offload tasks.

Ltot =

T∑
t=1

∑
d∈{u,e,c}

pd∗→d,tL
com
d,t +

T∑
t=1

U∑
u=1

pu→d,tL
tra
u,t ,

(13)
Total Energy Consumption (Etot): Similarly, as shown

in (14), this objective accounts for the total energy spent.
It comprises the energy for task execution (Ecom) on the
designated devices and the energy for wireless transmission
(Etra) from user devices.

Etot =

T∑
t=1

∑
d∈{u,e,c}

pd∗→d,tE
com
d,t +

T∑
t=1

U∑
u=1

pu→d,tE
tra
u,t .

(14)
Next, a set of objectives is defined to address key aspects

of system performance, including resource utilization (Oave),
privacy entropy (Have), load balancing (Btot), and CRP rev-
enue (Rtot).

Average Resource Utilization (Oave): As formulated in
(15), the average resource utilization quantifies the extent of
resource engagement by representing the ratio of occupied
devices (Otot) to the total number of devices (D).

Oave =
1

D
Otot, (15)

Average Privacy Entropy (Have): As shown in (16), the
average privacy entropy serves as an indicator of user privacy
protection. A higher individual entropy (Hd,t) reflects a more
disordered and less predictable task allocation pattern, thereby
increasing the difficulty for adversaries to infer sensitive
information.

Have =
1

D

∑
d∈{u,e,c}

Hd,t, (16)

Total Load Balancing (Btot): As expressed in (17), the
total load balancing metric is computed by aggregating the
individual load balance indicators Bd across all devices. The
underlying indicator Bd, defined in (11), corresponds to the
standard deviation of workloads, where a smaller value indi-
cates a more balanced load distribution and contributes to the
mitigation of computational bottlenecks.

Btot =
∑

d∈{u,e,c}

Bd, (17)

Total CRP Revenue (Rtot): As given in (18), the total CRP
revenue is obtained by aggregating the individual revenues

(Rd) of all resource-providing devices. The individual revenue
function Rd, detailed in (12), is formulated as a logarithmic
utility to model economic incentives, capturing diminishing
returns and promoting broad participation.

Rtot =
∑

d∈{u,e,c}

Rd. (18)

Assigning tasks to free computing devices can effectively
improve resource utilization. However, focusing solely on
utilization improvement is insufficient, as the objectives within
the 6G CPN are inherently conflicting. While individual met-
rics such as time and energy consumption are well-established
[2], [5], [16], the novelty of this study lies in holistically
modeling, for the first time, the complex interplay among
performance, efficiency, security, and economy. For instance,
minimizing time and energy consumption often leads to work-
load centralization, which directly conflicts with the goal
of equitable load balancing. Similarly, maximizing privacy
entropy may necessitate non-optimal routing that degrades
performance, whereas a strategy aimed at maximizing provider
revenue may create economic tensions that impact overall
resource occupancy. This landscape of competing demands ne-
cessitates a solution that seeks the best balanced compromise.
Therefore, to scientifically balance these competing objectives,
the MOOP is formulated as follows:

max {Oave, Have, Rtot} , (19)
min {Ltot, Etot, Btot} , (20)

subject to:

λd ≤ αdςd, (21)
0 < pu ≤ pmax

u , (22)
Lcom
d,t ≤ τt, (23)

Ecom
d,t ≤ Emax

d , (24)

ςu < ςe < ςc, ςd∗ < ςd, (25)
λdξd ≤ ςd (26)

Constraint (21) states that the actual task processing rate
of the computing device must not exceed its service rate.
Constraint (22) restricts the maximum transmit power of the
user device. Constraint (23) guarantees that the task execution
time does not exceed its deadline. Constraint (24) specifies
that the computing energy consumption should not exceed the
device’s maximum available energy. Constraint (25) differenti-
ates the computing capacities across three layers and specifies
task offloading from devices with lower capacity to those with
higher capacity. Constraint (26) mandates that the average rate
of incoming computing workload to a device must not exceed
its processing capacity.

B. Kernel Distance-based Dominance Relation

NSGA-III, an excellent evolutionary algorithm, can achieve
fast global searches with quality assurance, preventing MOOP
from settling into local optimality. Additionally, it tackles
high-dimensional problems by preserving population diversity
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through uniformly distributed reference points [38]. In prac-
tical MOOP, maximizing population diversity while ensuring
convergence is one of the best ways to quickly and effectively
obtain the optimal solution. Consequently, NSGA-III-KDR is
proposed to balance the aforementioned five objectives.

The performance of Pareto dominance relation-based al-
gorithms often exhibits serious dimensionality implications
due to dominance resistance in MOOP with more than three
objectives [39]. To address this, Tian et al. [17] proposed a
strengthened dominance relation (SDR) to enhance NSGA-II.
Considering that NSGA-III builds upon NSGA-II by intro-
ducing reference points, we propose a kernel distance-based
dominance relation (KDR) in NSGA-III-KDR. It builds on the
theoretical foundation of SDR to replace the original Pareto
dominance relation in NSGA-III. Specifically, if solution X1

dominates solution X2 in KDR, then (27) is satisfied.{
dk(X1) < dk(X2), θX1X2

≤ θ

dk(X1) ·
θX1X2

θ
< dk(X2), θX1X2

> θ
, (27)

where θX1X2
represents the acute angle between the two

candidate solutions X1 and X2, which can be calculated as
θX1X2

= arccos
(
F (X1), F (X2)

)
, and θ denotes the size of

the niche to which each candidate solution belongs, and can
be set to the

⌊
|P |
2

⌋
-th minimum element of{

min
q∈P\{p}

θpq|p ∈ P

}
, (28)

where θpq is the acute angle between p and q of any pair of
candidate solutions.

The kernel distance is chosen because, as the number
of objectives increases, neither the Euclidean distance nor
the Mahalanobis distance can accurately reflect the crowding
degree between individuals [40]. Therefore, NSGA-III-KDR
utilizes the kernel distance from the point X to the ideal point
Pide to measure the similarity between them in handling high-
dimensional problems [41]. It can be calculated as follows:

dk(X) =

√
2− 2 exp

(
−
∑m

i=1(∥fi(X)− Pide∥2)
2σ2

)
. (29)

C. Encoding of Computing Resources

Evolutionary algorithms utilize the concept of population
evolution to tackle practical MOOPs. Here, individuals in
a population are represented by a series of numbers, each
mapped to potential solutions of a MOOP through specific
encoding. Thus, encoding is crucial for implementing popula-
tion evolution in practical MOOPs.

In BECS, the occupancy status of computing devices is
encoded as genes, while the computing resources involved in

Algorithm 1 Population Evolution
Input: The initialized population X1, the total number of

iterations TI , and the population size PS
Output: the final population XTI

1: for j = 1 to TI do
2: for the chromosome in Xj do
3: Evaluate objective functions by (13), (14), (15), (16),

(17) and (18);
4: end for
5: Xj conducts crossover and mutation operation to pro-

duce Sj ,
6: Generate a merged population Y j = Xj

⋃
Sj with

2PS population size;
7: for merged population Y j do
8: Execute Non-KDR-dominated sort;
9: end for

10: Determine the reference point on the hyper-plane;
11: Associate chromosomes and reference points;
12: Evaluate niche-preservation operation, generate a new

population Xj+1;
13: end for
14: return XTI

sharing are encoded as chromosomes, constituting the entire
CRP for evolution. As illustrated in Fig. 2, a gene value
of 0 indicates a free computing device, whereas a value of
1 signifies that this device is occupied. This method allows
BECS to integrate various types of computing resources,
thereby building a generalized computing resource sharing
platform. Since the occupancy status of computing devices
directly correlates with gene encoding, and chromosomes
relate to computing allocation strategies, dynamic and fine-
grained updates of computing resources are enabled.

D. Population Evolution

To adapt to the dynamic 6G CPN environment, in which
task arrivals and resource availability fluctuate over time,
BECS operates not as a one-time process but as an adaptive
control loop. When a CRR requests computing resources in
the network, the computing resource sharing mechanism is
triggered. Subsequently, the system executes the NSGA-III-
KDR-based computing allocation scheme to match the optimal
CRP according to the current network state. NSGA-III-KDR
essentially follows the algorithmic framework of NSGA-III,
as shown in Algorithm 1. During the evolution process, the
chromosomes in the initial population X1 generate entirely
new chromosomes (computing allocation strategies) through
crossover and mutation operations. The crossover operation
enhances chromosome diversity, while the mutation opera-
tion, under specific conditions, modifies individual genes to

computing resources

chromosome

... Uu ... UU ... Ee ... EE

... 0 ... 1 ... 1 ...

C1 ... Cc ... CC

1 ... 0 ... 01 ... 0 ... 0

U1

1

E1

0

Fig. 2. Encoding of computing resources.
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seek those with higher adaptability. In each iteration, the
population generated by crossover and mutation merges with
the original, then executing a Non-KDR-dominated sort that
replaces the non-dominated sort in NSGA-III, thereby ef-
fectively enhancing the diversity of the computing resource
population. Subsequently, by associating chromosomes with
reference points in the hyper-plane and executing the Niche-
Preservation Operation, the next generation population can be
generated. After TI iterations of NSGA-III-KDR, the final
population XTI , containing the ultimate computing allocation
strategy, is obtained.

E. Optimum Selection

The final population XTI comprises a set of the best
feasible solutions for computing allocation, termed Pareto so-
lutions. However, in practical computing allocation problems,
the CRR needs to match only a specific CRP. Therefore, the
Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS), in conjunction with entropy weighting, is utilized
to evaluate the most optimal solution among many Pareto
solutions. As a method approximating the ideal solution,
TOPSIS rapidly identifies the optimal solution by ranking
all solutions according to their distance from the positive
(negative) ideal solution. Additionally, entropy weighting helps
eliminate the arbitrariness of subjectively determined weights.
This combination enables an objective and fair determination
of the optimal computing allocation from XTI . The specific
algorithm is detailed in [42].

By executing NSGA-III-KDR in BECS, CRP can set ψd

more reasonably by analyzing the optimal solution. Simulta-
neously, CRR can select the most appropriate CRP for task
offloading based on the optimal solution. Consequently, both
parties engaged in computing resource sharing achieve reli-
able, dynamic, and secure computing allocation and trading.

V. SECURE COMPUTING TRADING WITH PRIVACY
PROTECTION

In this section, we focus on the principles of the pro-
posed pseudonym scheme and secure computing trading under
pseudonyms in BECS.

A. System Initialization

In this phase, upon inputting the security parameter λ, the
system administrator selects a secure elliptic curve E : y2 =
x3+ax+ b mod p. The group G is an additive elliptic curve
group with order q and generator g defined over E , where
p and q are two large prime numbers. Subsequently, 6GBS
Bb chooses a random number b ∈ Z∗

q as its private keys
and caculates the public keys as bg. Additionally, it selects a
collision-resistant hash function H() : {0, 1}∗ → {0, 1}l and
makes {E ,G, a, b, p, q,H()} publicly available in blockchain.

B. Computing Devices Registration

All devices must be registered upon entering the system. Dd

first selects d ∈ Z∗
q as the private key and then calculates the

public key as dg. Subsequently, it sends its real identity IDd

and the public key dg to the nearest Bb via a secure channel.
After receiving the message from Dd, Bb stores H(H(IDd) ∥
dg) in SC, while simultaneously generating and sending Dd’s
identity certificate: Certd = Sigb(H(IDd) ∥ dg).

C. Pseudonym Generation

When Dd participates in computing resource sharing, it
must first send its public key dg and identity certificate Certd
to the nearest Bb. After Bb verifies the legitimacy of Dd’s
identity, it generates a pseudonym for Dd, as detailed in
Algorithm 2. Based on the Schnorr protocol [43], Dd proves
possession of the private key d to Bb without revealing it,
by utilizing the public parameter g and random numbers. Bb

verifies the legitimacy of Dd’s identity by confirming the cor-
rectness of Dd’s proof and response. Utilizing non-interactive
zero-knowledge protocol, Dd acquires a pseudonym (x, y) for
communication from Bb while preserving privacy.

Algorithm 2 Pseudonym Generation
Input: Dd’s private key d, public key dg.
Output: Dd’s pseudonym (x, y).

1: Dd −→ Bb: Sends (x̃ = g, ỹ = dg).
2: Bb −→ Dd: Chooses γ ∈ Z∗

q , sends x = γx̃.
3: Dd −→ Bb: Calculates y = dx, then chooses δ ∈ Z∗

q , and
calculates commitment K = δx, challenge ϵ = H(x ∥ y ∥
K), response M = δ + ϵd mod q, sends y,K, and M .

4: Bb: Calculates ϵ′ = H(x ∥ y ∥ K) to validates Mx
?
=

K + ϵ′y.
5: if the verification is correct then
6: Bb: Stores Dd’s pseudonym (x, y) in SC.
7: Dd: Stores its pseudonym (x, y), and the transcript T =

(K,M).
8: end if
9: return (x, y)

The pseudonym (x, y) = (γg, γdg), constructed using
Dd’s public key and random numbers, cannot establish its
legitimacy and thus requires Bb to issue the corresponding
certificate, as shown in Algorithm 3. Using a non-interactive
zero-knowledge protocol, Bb generates a commitment and a
response that include its private key. Dd then verifies these to
confirm that Bb, who possesses the private key b, generated
the certificate. Upon successful verification, Dd stores the
certificate.

Algorithm 3 Certificate Issuance
Input: Dd’s pseudonym (x, y); Bb’s private key b, public key

h = bg.
Output: Dd’s pseudonym certificate ϖ.

1: Bb −→ Dd: Chooses ϕ ∈ Z∗
q , and calculates commitment

O = ϕg, challenge ζ = H(x ∥ y ∥ O), response P =
ϕ+ ζb mod q, sends O and P .

2: Dd: Calculates ζ ′ = H(x ∥ y ∥ O) to verifies Pg ?
=

O+ ζ ′h, if verification succeeds, then store the certificate
ϖ = (O,P ).

3: return ϖ
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D. Pseudonymous Computing Trading

Upon entering the system, CRP synchronizes its computing
device information and status within blockchain. CRR sends
a computing request, and NSGA-III-KDR is utilized to match
the resource-sharing parties. CRP (D2) accepts a task offload-
ing request from CRR (D1). Initially, both parties must verify
the pseudonym and certificate according to Algorithm 4. D1

uses transcript T1 to prove the authenticity of the pseudonym
to D2 and uses the certificate ϖ1 to prove the legitimacy of the
certificate to D2. After both verifications succeed, D2 confirms
D1’s identity, and similarly, D1 confirms D2’s identity. Once
confirming their identities, CRR offloads its computing tasks
to CRP, which then updates its resource status and delivers the
computing results to CRR within the deadline. Following the
payment of corresponding fees by CRR, both parties finalize
the trading.

Algorithm 4 Identity Verification
Input: D1’s pseudonym (x1, y1), transcript T1 = (K1,M1),

and certificates ϖ1 = (O1, P1) are issued by B1; B1’s
public keys h1 = b1g.

Output: D2 accepts or rejects D1’s identity.
1: D1 −→ D2: Sends transcript T1 = (K1,M1) and

certificates ϖ1 = (O1, P1) under the pseudonym (x1, y1).

2: D2: Calculates ϵ′1 = H(x1 ∥ y1 ∥ K1) to verifies the
authenticity of pseudonym: M1x1

?
= K1 + ϵ′1y1.

Then Calculates ζ ′1 = H(x1 ∥ y1 ∥ O1) to verifies the
legitimacy of pseudonym and certificate: P1g

?
= O1 +

ζ ′1h1.
3: If all verifications are correct, D2 accepts D1’s identity.

Else, D2 rejects D1’s identity.
4: return D2 accepts or rejects D1’s identity.

E. Block Generation and Pseudonymous Update

Once a computing resource sharing trade is completed, the
transaction is finalized by generating a block on the system’s
underlying permissioned blockchain. Within this framework,
the 6GBSs serve as trusted consensus nodes that validate
transactions and maintain the ledger. The selection of the
6GBS responsible for block generation is determined by the
Proof of Trust and Adjustment (PoTA) consensus mechanism.
PoTA is a lightweight and efficient protocol that we introduced
in our previous work [27].

Specifically, the PoTA protocol selects a bookkeeping node
based on a dynamically calculated score. This score com-
prehensively evaluates both a node’s global trust, derived
from historical interaction ratings, and its relevant resource
service attributes. This mechanism ensures a balance between
security and efficiency, making it a practical and feasible
consensus mechanism for the dynamic 6G CPN. The 6GBS
with the highest score is authorized to aggregate all relevant
information, such as transaction details, digital signatures, and
resource status updates, into a new block. This block is then
broadcast for validation and subsequently appended to the
blockchain.

Subsequently, the CRP must update its computing resource
status, after which the new state information is broadcast
and synchronized across the entire blockchain. Before re-
engaging in computing resource sharing, CRP and CRR
need to request new pseudonyms and certificates from the
nearby 6GBS to ensure the user’s identity remains unlinkable.
Similarly, the 6GBS verifies the legitimacy of the CRP/CRR
identities through Algorithm 4 and then issues CRP/CRR new
pseudonyms and certificates.

VI. SECURITY ANALYSIS AND DISCUSSION

In this section, we analyze the security of BECS and discuss
the computational complexity of NSGA-III-KDR.

A. Threat Model and Adversary Assumptions

To facilitate formal analysis, a comprehensive threat model
is adopted, encompassing two primary types of adversaries:

• External Adversary (A): An entity that is not a le-
gitimate participant in the 6G CPN. Its capabilities are
limited to eavesdropping on communication channels,
with the objective of compromising user privacy via traf-
fic analysis or forging messages to obtain unauthorized
access.

• Malicious Internal Node (B): A registered participant
within the BECS system (e.g., a compromised CRP
or CRR) may comply with protocol specifications but
still attempt to exploit its privileges to deanonymize
transaction partners, repudiate actions, or disrupt system
operations by injecting false information.

The security analysis relies on standard cryptographic as-
sumptions, including the computational hardness of the dis-
crete logarithm problem and the collision resistance of the
hash function H.

B. System Security

The permissioned blockchain architecture establishes a
foundational layer of defense against both external and internal
adversaries.

1) Access Control and Authentication: This mechanism
constitutes the first line of defense against the external adver-
sary A. By mandating that all devices register through the RCC
and obtain verifiable credentials, the system effectively pre-
vents unauthorized entities from joining the network, thereby
mitigating risks such as impersonation and unauthorized ac-
cess to resources.

2) Integrity and Non-repudiation: Blockchain immutabil-
ity serves as a direct countermeasure to threats posed by
the malicious internal node B. It ensures that malicious
participants cannot tamper with transaction records to alter
agreed-upon terms or repudiate their actions. All activities
are irreversibly recorded, providing a verifiable audit trail that
enforces accountability.

3) Resilience and Availability: The blockchain’s distributed
architecture is inherently resilient to targeted attacks by a
powerful adversary B capable of compromising one or several
6GBSs. By eliminating single points of failure, the system
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ensures service continuity and preserves data integrity even in
the presence of partial compromise.

4) Resistance to Statistical Inference Attacks: The privacy
entropy maximization objective in the proposed MOOP pro-
vides a statistical defense against inference attacks launched
by the malicious internal node B. By promoting diverse
and unpredictable task offloading behaviors, this mechanism
obfuscates user behavioral patterns, thereby complementing
the direct identity unlinkability provided by the pseudonym
scheme.

C. Pseudonym and Certificate Security

The pseudonym scheme is equipped with specific crypto-
graphic properties to mitigate the capabilities of both adver-
saries, A and B, across a range of attack scenarios.

1) Uniqueness and Authenticity: This property mitigates
impersonation attacks launched by both adversaries, A and
B. The zero-knowledge protocol-based generation process
ensures that only the legitimate owner of a private key d can
generate a valid pseudonym and its corresponding proof. As a
result, it becomes computationally infeasible for an adversary
to forge a valid pseudonym for another user, thereby ensuring
that each identity within a transaction is authentic.

2) Unforgeability: Certificate unforgeability directly pre-
vents both adversaries from obtaining illegitimate trust within
the system. Since generating a valid certificate requires access
to the private key b of a 6GBS, no adversary can fabricate
a fraudulent certificate, thereby preventing impersonation of
certified and trustworthy nodes.

3) Unlinkability: This property plays a critical role in
defending against the privacy-compromising objectives of both
adversary types.

• Against the external adversary A, the use of fresh, ran-
dom nonces γ in each session ensures that pseudonyms
appear as independent and uncorrelated values on the
public channel. This renders traffic analysis and activity
inference through eavesdropping ineffective.

• Against the malicious internal node B, the zero-
knowledge-based interactions and session-specific
pseudonyms prevent it from linking its current
transaction partner to any previous or future transactions.
This prevents malicious peers from constructing a user’s
long-term behavioral profile.

4) Traceability: This feature is specifically designed as a
deterrent and mitigation strategy against the malicious inter-
nal node B. While unlinkability safeguards users from peer
inference, authorized traceability ensures that when malicious
behavior is verified, the 6GBSs can revoke the anonymity
of the offending node and expel it from the system. This
accountability mechanism deters internal misbehavior without
compromising user anonymity.

D. Computational Complexity of NSGA-III-KDR

In BECS, NSGA-III-KDR uses Non-KDR-dominated sort
instead of Non-Dominated Sort from NSGA-III to enhance
solution diversity, while maintaining the same computational

complexity. Namely, with L optimization objectives and a pop-
ulation size of X , NSGA-III-KDR exhibits a computational
complexity of O(LX2). Specifically, calculating the kernel
distance for each solution and determining the angle between
any two solutions each incur a complexity of O(L). Each
solution’s distance to the ideal point is calculated individually,
contributing to a complexity of O(LX). For dominance judg-
ment, each pair of solutions undergoes one angle calculation
and comparison, leading to an overall complexity of O(LX2).
Thus, the computational complexity of each iteration can
be approximated as O(LX2). Compared to NSGA-III-based
scheme [15], NSGA-III-KDR offers more diverse solutions,
improving the probability of superior computing allocation
strategies.

VII. SIMULATION RESULTS AND ANALYSIS

In this section, we initially compare the performance of
the proposed NSGA-III-KDR with NSGA-III and MOEA/D
applied in computing allocation, as well as the NSGA-II-SDR
that inspired us. Subsequently, we test the performance of four
algorithms in optimizing the proposed computing allocation
MOOP. Finally, we simulate the performance of the proposed
pseudonym scheme. The configurations of critical parameters
are detailed in Table III.

TABLE III
KEY PARAMETERS

Parameters Values
Main physical machine Intel i7-12700@2.1GHz with 32GB RAM

Operating systems Windows 11 & Ubuntu 24

Number of devices U: 300; E: 200; C: 100

Transmit power 20∼30 dbm

Noise power -97 dBm

Channel gain 2.15 dBi

Bandwidth 20 MHz

Average arrival rate 100 tasks/s

Computing Capacity [44],
[45]

U: 0.6∼10 TFLOPS; E: 10∼1000
TFLOPS; C: >1000 TFLOPS

Effective capacitance
coefficient [46] 10−29

Data size 500∼3000 KB

CPU cycles per byte 1000 cycles/byte

Cryptographic libraries PBC and Openssl

Probability of offloading U: 0.5, E: 0.3, C: 0.2

Service price U: 0.1, E: 1, C: 2

β1, β2; σ 0.6, 0.4; 1

A. Simulation of Proposed NSGA-III-KDR

In this part, we compare the proposed NSGA-III-KDR
with state-of-the-art evolutionary algorithms NSGA-III [15],
MOEA/D [16], and NSGA-II-SDR [17], utilizing the PlatEMO
platform [47]. The widely used SDTLZ [38], MaF [48], and
SMOP [49] test suites are employed as the benchmarks.
Meanwhile, IGD [50] and PD [51] are selected as performance
evaluation metrics. IGD comprehensively measures the conver-
gence and diversity of the algorithms, where a smaller IGD
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TABLE IV
IGD AND PD VALUE OF NSGA-III, MOEA/D, NSGA-II-SDR, AND NSGA-III-KDR ON SDTLZ1, SDTLZ2, MAF1, MAF2, SMOP1, AND SMOP2

WITH 5, 10, AND 15 OBJECTIVES. THE BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem M
IGD PD

NSGA-III MOEA/D NSGA-II-SDR NSGA-III-KDR NSGA-III MOEA/D NSGA-II-SDR NSGA-III-KDR

SDTLZ1
5 4.0919e-1 = 1.1456e+0 - 7.2486e-1 - 4.072e-1 1.0645e+7 - 5.7924e+6 - 1.8399e+7 - 4.7052e+7
10 1.7833e+1 + 3.1719e+1 + 3.7045e+1 + 1.3076e+2 2.3247e+10 + 4.3704e+9 + 7.6415e+8 + 1.0865e+10
15 6.1421e+2 + 8.2078e+2 + 8.4100e+2 + 6.4468e+3 2.8108e+12 + 4.7472e+11 + 9.5939e+7 - 5.2570e+9

SDTLZ2
5 1.1871e+0 = 3.1693e+0 - 4.3480e+0 - 1.1838e+0 1.9000e+7 - 1.1551e+7 - 1.6919e+4 - 9.6971e+7
10 6.8214e+1 - 1.1354e+2 - 1.4962e+2 - 6.3516e+1 6.3070e+10 - 8.2536e+9 - 6.7541e+8 - 1.0334e+10
15 2.3123e+3 - 3.6367e+3 - 3.6612e+3 - 2.1131e+3 1.3576e+13 - 4.7141e+11 - 8.7418e+8 - 2.9897e+11

MaF1
5 2.2118e-1 - 1.6710e-1 - 1.4031e-1 + 1.6200e-1 1.7519e+7 - 3.8550e+6 - 1.9648e+7 - 2.4256e+7
10 3.1732e-1 - 3.9154e-1 - 2.9201e-1 + 3.1425e-1 8.9830e+9 - 1.5818e+9 - 6.1301e+9 - 1.2171e+10
15 3.8109e-1 + 4.7345e-1 - 4.2790e-1 - 4.0302e-1 1.9765e+11 = 5.7436e+10 - 5.9691e+10 - 2.0030e+11

MaF2
5 1.4175e-1 - 1.5433e-1 - 1.3740e-1 - 1.2311e-1 1.8852e+7 - 1.3030e+7 - 1.6372e+7 - 2.1218e+7
10 2.7622e-1 - 3.0954e-1 - 4.0882e-1 - 2.5215e-1 8.5156e+9 - 3.8250e+9 - 8.3977e+9 - 1.3398e+10
15 3.2353e-1 + 3.8517e-1 + 5.6897e-1 - 4.6420e-1 2.5275e+11 + 1.1452e+11 - 2.4382e+10 - 1.3115e+11

SMOP1
5 1.5928e-1 - 2.2883e-1 - 3.4716e-1 - 1.3947e-1 3.6432e+6 - 3.7787e+6 - 6.8850e+6 - 2.5642e+7
10 4.2414e-1 - 3.9985e-1 - 4.9668e-1 - 2.8703e-1 2.0785e+9 - 9.4496e+8 - 1.9355e+9 - 1.1620e+10
15 4.0587e-1 + 4.5602e-1 + 4.0515e-1 + 5.2449e-1 8.5548e+10 - 5.5518e+9 - 7.0498e+10 - 1.0424e+11

SMOP2
5 3.8732e-1 - 5.8495e-1 - 5.4909e-1 - 3.6202e-1 6.2126e+6 - 6.4898e+6 - 1.1547e+7 - 3.9017e+7
10 9.1827e-1 - 5.8728e-1 - 8.6089e-1 - 5.5237e-1 3.7243e+9 - 1.8461e+9 - 3.3883e+9 - 2.1840e+10
15 6.2944e-1 + 7.2789e-1 + 6.8003e-1 + 9.1024e-1 1.7008e+11 = 1.1430e+10 - 1.3620e+11 - 2.0211e+11

+/-/= 6/10/2 5/13/0 6/12/0 3/13/2 2/16/0 1/17/0

value indicates better performance. PD primarily reflects the
diversity of the algorithms, with a larger PD value indicating
greater population diversity. The crossover probability is set to
1, the mutation probability is set to 1/D, and their distribution
indicator is set to 20, where D represents the length of the
decision variable. All three algorithms are executed 30 times
on different test problems, and the average values are taken.
The performance of the three algorithms is compared under
different numbers of objectives and benchmarks, as shown in
Table IV, where “+”, “−”, and “=” indicate that the result is
significantly better, significantly worse, and statistically similar
to that obtained by NSGA-III-KDR, respectively.

It can be concluded from the experimental results that
NSGA-III-KDR has the strongest competitiveness, achieving
the best IGD and PD numbers of 10 and 15, respectively.
This demonstrates that NSGA-III-KDR has better performance
compared to the other two algorithms, especially in terms
of population diversity, offering a richer set of solutions for
computing allocation.

B. Simulation of Proposed Computing Allocation Scheme

In this part, we compare NSGA-III, MOEA/D, NSGA-II-
SDR, and NSGA-III-KDR in optimizing the proposed com-
puting allocation MOOP. To simulate a representative snapshot
of the dynamic CPN environment, we initialize the population
with 50% of the computing devices randomly occupied, then
perform the optimization using each of the four algorithms
separately. This simulation evaluates the algorithm’s ability
to obtain a high-quality allocation solution within a single
decision epoch, demonstrating its effectiveness in adapting
to the heterogeneous and resource-constrained conditions of
that specific moment. We calculate the changes in computing
resources between the final and initial populations, while
ensuring algorithmic convergence. Due to the uncertainty of

the evolutionary process, we evaluate the performance of the
four algorithms using three statistical indicators. Specifically,
the overall distribution is presented via box plots (showing the
maximum, upper quartile, median, lower quartile, and mini-
mum), the optimal values based on the TOPSIS method are
denoted by triangles, and the average values are represented
by squares. This multi-dimensional comparison enables a more
comprehensive assessment of algorithm performance.

The improvement rate (IR) of computing resource utilization
under four algorithms is shown in Fig. 3. Overall, except for
MOEA/D, the other three algorithms demonstrate positive op-
timization in computing resource utilization. NSGA-III-KDR
shows the most significant overall and average improvements,
indicating superior performance and the most substantial en-
hancement in resource utilization. NSGA-III and NSGA-II-
SDR follow, showing notable but lesser improvements. Al-
though MOEA/D achieves the best optimal solution, its overall
performance is suboptimal, characterized by some negatively
optimized computing allocation strategies. This issue likely
stems from MOEA/D’s predefined fixed neighborhood struc-
tures, which may restrict its global search capability and lead
to local optimality.

As resource utilization improved, Fig. 4 to Fig. 8 illus-
trate the changes in the other five objectives considered by
the computing allocation MOOP. Except for load balancing,
improvements in all other objectives are observed with the
optimization based on NSGA-III-KDR, attributed to enhanced
resource utilization. The superior diversity of NSGA-III-KDR
facilitates a more even distribution of computing resources, as
particularly evidenced by the significant increase in privacy
entropy. Although NSGA-III exhibits similar trends, it is less
effective than NSGA-III-KDR. Notably, with NSGA-III-KDR
and NSGA-III, increased resource utilization results in higher
delays and sharing revenue. Meanwhile, energy consumption
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Fig. 3. The IR of computing resource utilization.
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Fig. 4. The IR of time consumption.
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Fig. 5. The IR of energy consumption.
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Fig. 6. The IR of privacy entropy.
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Fig. 7. The IR of load balancing.
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Fig. 8. The IR of sharing revenue.

decreases as more tasks are offloaded to U, leveraging all
available resources within 6G CPN comprehensively. The
optimization strategy of NSGA-II-SDR favors offloading tasks
to E and C, significantly reduces delay, but uniquely re-
sults in positive growth in load balancing among the four
algorithms. The optimal solution of MOEA/D surpasses all
other algorithms, achieving the highest resource utilization
and substantial improvements in all objectives, except for load
balancing, and the decline in load balancing suggests a rational
allocation of computing resources. However, the overall data
of MOEA/D is the worst, with a negative optimization of
12.99%. Furthermore, although its median or average increase
in resource utilization is less than that of NSGA-III-KDR,
the more substantial improvement in load balancing suggests
a less favorable overall evolution. Since the selection of the
optimal solution using TOPSIS is random, not every iteration
of MOEA/D yields a solution that outperforms those of other
algorithms.

C. Simulation of Proposed Pseudonymous Scheme

In this part, we evaluate the computational overhead of the
proposed pseudonym scheme by comparing it with several
existing pseudonymous schemes. Each operation and phase are
tested 20 times separately, and the average value is recorded
as the experimental data to eliminate the influence of hardware
fluctuations during the operation. First, the BN curve [52] with
a 128-bit security level is selected to implement the bilinear
group. The execution time of basic cryptographic operations
are shown in Table V. Generally, the execution times required
for bitwise XOR and modular multiplication are significantly
lower compared to other cryptographic operations, and can
thus be disregarded. Moreover, we utilize SHA-256 as the
hash function. Then, we assess the time costs associated

with system initialization and pseudonym generation (SIPG),
certificate issuance or message signing(CIMS), and identity or
message verification (IDMV) in the pseudonym authentication
process, comparing the proposed scheme with those in [53]–
[56], as shown in Table VI.

The proposed scheme, which is based on the Schnorr
protocol, primarily involves operations T ecc

pm , T ecc
pa , and Tha in

the pseudonym authentication process. The total computational
overload is 14T ecc

pm + 4T ecc
pa + 8Tha = 8.664 ms. Conversely,

Bagga et al.’s scheme [53] uses Tmtp and Tbp in the SIPG and
IDMV, leading to a higher computational overload. Similarly,
Shen et al.’s scheme [54], based on bilinear pairing, also
incurs a higher computational overload. Although based on
ECC, Yang et al.’s scheme [55] includes 17 times T ecc

pm within
SIPG, leading to a significant computational overload. Wang
et al.’s scheme [56], similar to the proposed scheme, provides
the optimal computational overload in both SIPG and IDMV.
However, a total of 16 times T ecc

pm yields a marginally greater
computational overload than ours. Therefore, our scheme
achieves the lowest computational overload compared to other

TABLE V
EXECUTION TIME OF CRYPTOGRAPHIC OPERATIONS

Notation Operation Time (ms)
T ecc
pm point multiplication in ECC 0.618

T ecc
pa point addition in ECC 0.001

Tha general hash 0.001

Tep exponentiation 0.011

Tbp bilinear pairing 1.456

T bp
pm point multiplication in bilinear pairing 1.277

T bp
pa point addition in bilinear pairing 0.003

Tmtp hash-to-point in bilinear pairing 5.197
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TABLE VI
COMPARISON OF COMPUTATIONAL OVERHEAD

Scheme SIPG CIMS IDMV Total
Bagga et al.’s
scheme [53]

4T ecc
pm + 2Tmtp + 1Tha =

12.867 ms
3T ecc

pm + 3T ecc
pa + 3Tha =

1.86 ms
3Tbp + 4T ecc

pm + 4T ecc
pa +

3Tha = 6.847 ms
21.574 ms

Shen et al.’s
scheme [54]

3Tbp + 4T bp
pm + 1T bp

pa +
2Tep + 4Tha = 9.505 ms

1Tbp + 1T bp
pm + 1Tep +

1Tha = 2.745 ms
2Tbp + 2T bp

pm + 1T bp
pa +

1Tep + 1Tha = 5.481 ms
17.731 ms

Yang et al.’s
scheme [55]

17T ecc
pm + 5T ecc

pa + 11Tha =
10.522 ms

1Tha = 0.001 ms
3T ecc

pm + 4T ecc
pa + 2Tha =

1.86 ms
12.383 ms

Wang et al.’s
scheme [56]

4T ecc
pm + 1T ecc

pa + 2Tha =
2.475 ms

9T ecc
pm + 4T ecc

pa + 5Tha =
5.571 ms

3T ecc
pm + 2T ecc

pa + 4Tha =
1.86 ms

9.906 ms

Our proposed
scheme

7T ecc
pm + 1T ecc

pa + 4Tha =
4.331 ms

3T ecc
pm + 1T ecc

pa + 2Tha =
1.857 ms

4T ecc
pm + 2T ecc

pa + 2Tha =
2.476 ms

8.664 ms

related schemes.
Next, considering the diversity of computational devices,

we test the portability of the proposed pseudonym scheme.
We consider five different devices, including a workstation
with an Intel i9-12900k@3.9GHz and 64GB RAM (Intel i9),
a computer with an i7-12700@2.1GHz and 32GB RAM (Intel
i7), a computer with an i5-8500@3GHz and 8GB RAM (Intel
i5), a smartphone with Snapdragon 7+ Gen 2 and 16GB RAM
(Snapdragon 7+ Gen 2), and a MacBook with an M1 chip and
16GB RAM (Apple M1). We test the time consumption for
each of the five phases of the pseudonym authentication pro-
cess on these devices: System Initialization (SI), Computing
Devices Registration (CR), Pseudonym Generation (PG), Cer-
tificate Issuance (CI), and Identity Verification (IV), including
the Total Time (TT) for the entire process, as shown in Fig.
9. Time consumption varies across devices due to differences
in CPU performance. Specifically, the MacBook requires the
longest total time to complete a pseudonym authentication,
only 20.813 ms. The SI is the most time-consuming, as it
involves generating system keys and registering user informa-
tion. However, typically, SI is only performed once, whereas
CR, PG, CI, and IV take less than 8 ms across all devices,
with PG taking the longest at 7.628 ms on the smartphone.
This demonstrates the good portability and lightweight of the
proposed pseudonym scheme.

SI CR PG CI IV TT
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Fig. 9. The time consumption on different devices.

VIII. CONCLUSION

This article investigates improving computing resource uti-
lization within 6G CPN and proposes BECS, a privacy-
preserving computing resource sharing mechanism. We con-
sider various communication, computing, and service factors
in 6G CPN, modeling them as a six-objective MOOP. Mean-
while, we utilize the proposed NSGA-III-KDR to find optimal
solutions for this MOOP. Additionally, we introduce a novel
pseudonym scheme to protect the privacy of users engaged
in computing resource sharing. Extensive simulations demon-
strate the effectiveness of BECS. Moving forward, we intend
to further explore computing sharing in dynamic real-time
scenarios and investigate advanced access control solutions to
protect the task payload.
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